Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts
نویسندگان
چکیده
Cancer-associated fibroblasts (CAF) are a major constituent of the pancreatic cancer microenvironment and that the meaning is as intended. Pancreatic cancer cells can induce normal fibroblasts to convert into CAF and, reciprocally, CAF promote tumor invasions and proliferations. The mechanism of the conversion from normal fibroblasts (NF) to CAF remains unclear. MicroRNA are short non-coding RNA involved in the post-transcription gene regulation, which have been defined as an imperative controller in tumor invasions, proliferations and colony formations. Microvesicles (MV) have been proved to be an important mediator of intercellular communication and can selectively transport secreted microRNA from a donor cell into a recipient cell. In this study, we isolated primary pancreatic fibroblasts from wild type C57 mice and co-cultured them with pancreatic cancer cell lines, BxPC-3 and SW1990, and observed the conversion from NF to CAF, or at least CAF-like cells. This phenomenon could also be replicated in primary fibroblasts treated with MV separated from a cancer cell media. We identified that miR-155 was upregulated in PaC-derived MV and we confirmed that normal fibroblasts could convert into CAF after MV containing miR-155 had been taken up. TP53INP1 is a target of miR-155 in fibroblasts and a downregulation of TP53INP1 protein levels could contribute to the fibroblasts' activation. These results indicated that pancreatic cancer cells might reprogram normal adjacent fibroblasts into CAF by means of secreted MV containing miR-155. Targeting the circulating microRNA might be a potential therapy for malignant tumors.
منابع مشابه
MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer.
UNLABELLED Cancer-associated fibroblasts (CAF) are a major constituent of the tumor stroma, but little is known about how cancer cells transform normal fibroblasts into CAFs. microRNAs (miRNA) are small noncoding RNA molecules that negatively regulate gene expression at a posttranscriptional level. Although it is clearly established that miRNAs are deregulated in human cancers, it is not known ...
متن کاملMicroRNAs play a big role in regulating ovarian cancer-associated fibroblasts and the tumor microenvironment.
Mitra and colleagues analyzed microRNA expression profiles of fibroblasts isolated from ovarian cancer patients, searching for dysregulated microRNAs in the stromal compartment of human cancer. They found that decreased miR-31 and miR-214 and increased miR-155 expression can reprogram normal fibroblasts into tumor-promoting cancer-associated fibroblasts. They identified CCL5, a protumorigenic c...
متن کاملIdentification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions
BACKGROUND Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithe...
متن کاملMiR-21-mediated Metabolic Alteration of Cancer-associated Fibroblasts and Its Effect on Pancreatic Cancer Cell Behavior
In this study, we investigated whether the metabolic alteration of cancer-associated fibroblasts (CAFs) occurs via miR-21 remodeling and the effect of this alteration on pancreatic cancer cells. CAFs and normal fibroblasts (NFs) were isolated and cultured. Glucose consumption and lactic acid production were tested, and lactate dehydrogenase (LDHA), pyruvate kinase m2 (PKM2), and miR-21 expressi...
متن کاملMicroRNAs as regulators of tumor-associated stromal cells
The interplay between tumor and stromal cells represents an essential component of tumor progression and metastasis, and has become a focal point of current research efforts. Tumor-stromal interactions support early events in tumorigenesis, mediate the formation of pre-metastatic niches, and regulate the initiation and progression of distant metastases. Developing a better understanding of stro...
متن کامل